294 research outputs found

    Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response

    Get PDF
    The rollout of smart meters raises the prospect that domestic customer electrical demand can be responsive to changes in supply capacity. Such responsive demand will become increasingly relevant in electrical power systems, as the proportion of weather-dependent renewable generation increases, due to the difficulty and expense of storing electrical energy. One method of providing response is to allow direct control of customer devices by network operators, as in the UK 'Economy 7' and 'White Meter' schemes used to control domestic electrical heating. However, such direct control is much less acceptable for loads such as washing machines, lighting and televisions. This study instead examines the use of real-time pricing of electricity in the domestic sector. This allows customers to be flexible but, importantly, to retain overall control. A simulation methodology for highlighting the potential effects of, and possible problems with, a national implementation of real-time pricing in the UK domestic electricity market is presented. This is done by disaggregating domestic load profiles and then simulating price-based elastic and load-shifting responses. Analysis of a future UK scenario with 15 GW wind penetration shows that during low-wind events, UK peak demand could be reduced by 8-11 GW. This could remove the requirement for 8-11 GW of standby generation with a capital cost of ÂŁ2.6 to ÂŁ3.6 billion. Recommended further work is the investigation of improved demand-forecasting and the price-setting strategies. This is a fine balance between giving customers access to plentiful, cheap energy when it is available, but increasing prices just enough to reduce demand to meet the supply capacity when this capacity is limited

    Architecture of a network-in-the-Loop environment for characterizing AC power system behavior

    Get PDF
    This paper describes the method by which a large hardware-in-the-loop environment has been realized for three-phase ac power systems. The environment allows an entire laboratory power-network topology (generators, loads, controls, protection devices, and switches) to be placed in the loop of a large power-network simulation. The system is realized by using a realtime power-network simulator, which interacts with the hardware via the indirect control of a large synchronous generator and by measuring currents flowing from its terminals. These measured currents are injected into the simulation via current sources to close the loop. This paper describes the system architecture and, most importantly, the calibration methodologies which have been developed to overcome measurement and loop latencies. In particular, a new "phase advance" calibration removes the requirement to add unwanted components into the simulated network to compensate for loop delay. The results of early commissioning experiments are demonstrated. The present system performance limits under transient conditions (approximately 0.25 Hz/s and 30 V/s to contain peak phase-and voltage-tracking errors within 5. and 1%) are defined mainly by the controllability of the synchronous generator

    Measurements with uniform aggregated weighting using boxcar filters for time-synchronised metering, power quality assessment, and control

    Get PDF
    Boxcar (rectangular) window functions are commonly used for measurements of electrical energy for revenue purposes, or for power quality assessment. This is because they can be repeated using Bartlett’s method so that the time-domain sampled data is used with a uniform aggregated weighting. However, such simple window functions are not suitable for real-time protection and control measurements due to their poor frequency-domain performance. Raised-cosine or Tukey windows offer a compromise using Welch’s method, but real-time implementation of these functions, using windows adaptive to varying system frequency, can be difficult due to computational load. Alternatively, this paper shows that fast-to-execute cascaded boxcar filters can be used to achieve the desirable property of uniform aggregated weighting, as well as their previously-demonstrated frequency-domain capabilities. This means that measurements based on cascaded boxcar filters could be used for formal revenue metering and power-quality assessment, at the same time as for real-time control, phasor measurement, and protection

    P-class phasor measurement unit algorithms using adaptive filtering to enhance accuracy at off-nominal frequencies

    Get PDF
    While the present standard C.37.118-2005 for Phasor Measurement Units (PMUs) requires testing only at steady-state conditions, proposed new versions of the standard require much more stringent testing, involving frequency ramps and off-nominal frequency testing. This paper presents two new algorithms for “P Class” PMUs which enable performance at off-nominal frequencies to be retained at levels comparable to the performance for nominal frequency input. The performances of the algorithms are compared to the “Basic” Synchrophasor Estimation Model described in the new standard. The proposed algorithms show a much better performance than the “Basic” algorithm, particularly in the measurements of frequency and rate-of-change-of-frequency at off-nominal frequencies and in the presence of unbalance and harmonics

    Impacts of harmonic distortion from charging electric vehicles on low voltage networks

    Get PDF
    Paper focusing on the impacts of harmonic distortion from charging electric vehicles on low voltage networks

    Frequency and fundamental signal measurement algorithms for distributed control and protection applications

    Get PDF
    Increasing penetration of distributed generation within electricity networks leads to the requirement for cheap, integrated, protection and control systems. To minimise cost, algorithms for the measurement of AC voltage and current waveforms can be implemented on a single microcontroller, which also carries out other protection and control tasks, including communication and data logging. This limits the frame rate of the major algorithms, although analogue to digital converters (ADCs) can be oversampled using peripheral control processors on suitable microcontrollers. Measurement algorithms also have to be tolerant of poor power quality, which may arise within grid-connected or islanded (e.g. emergency, battlefield or marine) power system scenarios. This study presents a 'Clarke-FLL hybrid' architecture, which combines a three-phase Clarke transformation measurement with a frequency-locked loop (FLL). This hybrid contains suitable algorithms for the measurement of frequency, amplitude and phase within dynamic three-phase AC power systems. The Clarke-FLL hybrid is shown to be robust and accurate, with harmonic content up to and above 28% total harmonic distortion (THD), and with the major algorithms executing at only 500 samples per second. This is achieved by careful optimisation and cascaded use of exact-time averaging techniques, which prove to be useful at all stages of the measurements: from DC bias removal through low-sample-rate Fourier analysis to sub-harmonic ripple removal. Platform-independent algorithms for three-phase nodal power flow analysis are benchmarked on three processors, including the Infineon TC1796 microcontroller, on which only 10% of the 2000 mus frame time is required, leaving the remainder free for other algorithms

    PMU algorithms and testing

    Get PDF
    This conference contribution looks at PMU algorithms and testin

    Demand response and embedded storage to facilitate diverse and renewable power generation portfolios in the UK

    Get PDF
    This thesis examines the growing problems surrounding the supply and demand of electric power in the U

    P and M class phasor measurement unit algorithms using adaptive cascaded filters

    Get PDF
    The new standard C37.118.1 lays down strict performance limits for phasor measurement units (PMUs) under steady-state and dynamic conditions. Reference algorithms are also presented for the P (performance) and M (measurement) class PMUs. In this paper, the performance of these algorithms is analysed during some key signal scenarios, particularly those of off-nominal frequency, frequency ramps, and harmonic contamination. While it is found that total vector error (TVE) accuracy is relatively easy to achieve, the reference algorithm is not able to achieve a useful ROCOF (rate of change of frequency) accuracy. Instead, this paper presents alternative algorithms for P and M class PMUs which use adaptive filtering techniques in real time at up to 10 kHz sample rates, allowing consistent accuracy to be maintained across a ±33% frequency range. ROCOF errors can be reduced by factors of >40 for P class and >100 for M class devices

    Methodology for testing loss of mains detection algorithms for microgrids and distributed generation using real-time power hardware–in-the-loop based technique

    Get PDF
    The effective integration of distributed energy resources in distribution networks demands powerful simulation and test methods in order to determine both system and component behaviour, and understand their interaction. Unexpected disconnection of a significant volume of distributed generation (DG) could have potentially serious consequences for the entire system [1], this means DG sources can no longer be treated as purely negative load. This paper proposes a method of testing loss-of-mains (LOM) detection and protection schemes for distributed energy resources (DER) using real-time power hardware-in-the-loop (RT PHIL). The approach involves connecting the generator and interface under test (e.g. motor-generator set or inverter, controlled by an RTS – Real Time Station[3]) to a real-time simulator (an RTDS – Real Time Digital Simulator[2]) which simulates the local loads and upstream power system. This arrangement allows observation of the interaction with other controls in the network beyond the local microgrid area. These LOM schemes are of increasing importance because with growing penetration levels of distributed generation the network operator has less visibility and control of the connected generation. Furthermore when the generation and load in a particular network area are closely matched (e.g. a grid-connected microgrid), it becomes increasingly difficult to detect a loss of grid supply at the generator. This work builds upon the existing LOM testing methodology proposed in [4]. By utilising RT PHIL and a laboratory microgrid, the testing environment has been brought to a new level of functionality where system integrity can be more rigorously and realistically evaluated
    • 

    corecore